CALCULATION OF THE MECHANICAL PROPERTIES OF FeB LAYER’S BY FINITE ELEMENT METHOD

نویسندگان

  • Osman Culha
  • Mustafa Toparli
  • Tevfik Aksoy
  • Mustafa Akdag
  • O. Culha
  • M. Toparli
  • T. Aksoy
  • M. Akdag
چکیده

Surface treatments of engineering materials are important for serviceable engineering components. One of the thermo-chemical surface treatments of steel based materials is the boriding process. In this study, low alloy steel substrates were borided by pack boriding process at 900 C. Experimental indentation tests were conducted on Dynamic Ultra-micro Hardness test machine, under applied peak loads of 800 mN, 1000 mN, 1200 mN and 1400 mN. To get the mechanical properties of FeB layers, the resulting load–unload test data of the samples obtained from the experimental indentation tests were analyzed and curve-fitted in Kick’s and Meyer’s law for the loading and the unloading part of the load-unload curve respectively. Then, a set of analytical functions that take the pile-up and sink-in effects into account during instrumented sharp indentation were solved using numerical methods. These analytical functions were defined within an identified representative plastic strain, εr, for the Vickers indenter geometry as a strain level that allows for the description of the indentation loading response independent of strain hardening exponent, n. The mechanical characterization of samples, finite element modeling was applied to simulate the mechanical response of FeB layer on low alloy steel substrate by using ABAQUS software package program. Key WordsBoride Layer, Low alloy steel substrate, Indentation, Yield curve, FEM

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Crack Initiation Direction for Inclined Crack Under Biaxial Loading by Finite Element Method

This paper presents a simple method based on strain energy density criterion to study the crack initiation angle by finite element method under biaxial loading condition. The crack surface relative displacement method is used to eliminate the calculation of the stress intensity factors which are normally required. The analysis is performed using higher order four node quadrilateral element. The...

متن کامل

Studying the Mechanical and Thermal Properties of Polymer Nanocomposites Reinforced with Montmorillonite Nanoparticles Using Micromechanics Method

In this study, the mechanical and thermal behavior of the nano-reinforced polymer composite reinforced by Montmorillonite (MMT) nanoparticles is investigated. Due to low cost of computations, the 3D representative volume elements (RVE) method is utilized using ABAQUS finite element commercial software. Low density poly ethylene (LDPE) and MMT are used as matrix and nanoparticle material, respec...

متن کامل

Study of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model

In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...

متن کامل

Back-calculation of mechanical parameters of shell and balls materials from discrete element method simulations

Discrete Element Method (DEM) is extensively used for mathematical modeling and simulating the behavior of discrete discs and discrete spheres in two and three dimensional space, respectively. Prediction of particles flow regime, power draw and kinetic energy for a laboratory or an industrial mill is possible by DEM simulation. In this article, a new approach was used to assess the main paramet...

متن کامل

Nonlinear Finite Element Analysis of Thermoelastic Stresses of FGM Rotating Disk Considering Temperature-Dependency of Material Properties

In the present paper, nonlinear radial and hoop thermoelastic stresses analysis of a disk made of FGMs material is investigated. According to this purpose, finite element method is used. In the present method, second-order one-dimensional element (with three node points) is proposed. The geometrical and stress boundary conditions are defined in the state of non-existence of external pressure an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010